
Introduction 

The oil and gas industry has seen several paradigm 
shifts through centuries. Machine learning (ML) tech-
niques perhaps mark the most important milestone in 
the history of this industry which may change the tradi-
tional methods and approaches. In this context, ML 
algorithms could be seen as an alternative 4D seismic 
forward model. Quantitative applications of 4D seismic 
data need a forward model to build a bridge between 
simulated rock and fluid properties and synthetic seis-
mic responses. The 4D seismic forward modeling is a 
complex process which includes two back-to-back 
models. The first is a petro-elastic model (PEM) and the 
second is a seismic model. Therefore, the 4D seismic 
forward modeling is composed of a combination of 
PEM and the seismic model. This combination brings 
some problems in 4D seismic quantitative applications 
such as 4D seismic history matching. For example, its 
multidisciplinary nature is a problem especially when 
the forward model is used in history matching process. 
Moreover, it is a time-consuming process within itera-
tive ensemble-based data assimilation scheme where 
hundreds or even thousands simulation runs are needed. 
Finally, the forward model is a step-by-step combo of 
models. To mitigate these problems, ML models could 
be seen as a proxy to substitute the traditional 4D seis-
mic forward model. In this research, we propose a 
methodology to develop the proxy model (we call it, 
S4D-Proxy) and apply it to a post salt Brazilian off-
shore field. 

Methodology 

The proposed method to develop the S4D-Proxy model 
has three main steps as follows: 

The first step (datasets preparation): The first step 
for our method is data preparation. This step is im-
portant as the ML algorithms learn from the data and 
find hidden patterns between the input features (such as 
saturation-pressure changes, porosity) and the target 
(for our application, dRMS or time-lapse difference in 
root mean square amplitude). We use an ensemble of 
3D reservoir simulation models to prepare the datasets 
and train the ML algorithms. First, each 3D reservoir 
model is simulated until 2016 (monitor seismic survey 
time for our application). Knowing the baseline (2013) 
and monitor (2016) times, the time-lapse property 
changes, such as saturation and pressure changes, are 
extracted from the simulation model. The simulation 
outputs are then transformed to the seismic attribute 
RMS using petro-elastic and seismic models and the 
synthetic dRMS is generated. Map-based input features 
such as porosity, NTG, and initial saturation and pres-
sure are extracted. Lastly, time-lapse changes in satura-
tion-pressure and dRMS are also extracted as 2D maps. 
The above process is repeated for all the models in the 
ensemble. Eventually, the prepared dataset for our ap-
plication is divided into the training (70% of the models 
in the ensemble, or 140 models), the validation (10%, 
or 20 models), and the test dataset (20%, or 40 models). 
For more details, interested readers are referred to 
Danaei et al. (2023). 

The second step (training the ML algorithms): Two 
ML algorithms are considered for our research. The 
first is an Extreme Gradient Booster (XGBoost) that is 
described in Chen and Guestrin (2016) and the second 
is a tailored Deep Neural Networks (DNN) architecture 
which its details could be found in Simonyan and Zis-
serman (2015). Moreover, there are two characteristics 
for our application to train the ML algorithms. The first 
is the use of an ensemble of reservoir simulation mod-

els (for our case, prior ensemble) and the second is map
-based inputs and output. For the training phase, two 
strategies are adopted. The first is a standard training in 
which input features are related pointwise to the desired 
output and the second is 3X3 neighborhood strategy 
where in the input features, a point with its neighbors 
within a 3x3 window are related to the desired output. 

The third step (test): The performance of the trained 
ML models is evaluated using a test dataset. This da-
taset is not used in the training and is completely un-
known to the ML models. It is worth noting that we 
evaluate the ML models based on a quantitative meas-
ure (R-squared) and a visual comparison between the 
predicted dRMS from ML models and the results from 
a full-fledge PEM and seismic model. 

Application 

The proposed methodology to develop the proxy model 
was applied to a post-salt offshore field located in the 
Campos Basin. The field is composed of unconsolidat-
ed (soft) sandstone and there are seven producers and 
four injectors. Figure. 1a shows a random simulation 
model in the ensemble of models (prior ensemble of 
models before data assimilation) and Figure. 1b illus-
trates dRMS map of observed seismic data. Main 4D 
signals of the mentioned field are located around water 
injectors (hardening signals) and a noticeable softening 
4D signal in the middle of the reservoir because of gas 
coming out of solution. There are some small-scale 4D 
signals which are considered for our application as 
well. 

Three ML models are considered for our application 
(Table 2). For the first model, we used XGBoost (XGB) 
with a standard training strategy, for the second model, 
a 3x3 neighborhood was considered with the XGBoost 
algorithm (XGB-3x3) and finally, the DNN algorithm 
was trained with a 3x3 neighborhood strategy (DNN-
3x3). 

Results 

This section is divided into two parts. The first part 
shows the performance of the ML models based on the 
quantitative measure (R-squared), and the second is a 
visual comparison between ML predictions and the 
traditional approach. 

Quantitative measure (R-squared): 
We compared the responses of the ML models on the 
test dataset. For each ML model result, a boxplot was 
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Figure 1: (a) a random porosity model in the ensemble of 

reservoir models and (b) dRMS attribute to define softening 

(red) and hardening (blue) signals. 

Table 2: Different ML models as S4D-Proxy. 
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drawn for the group of the R-squared in the test dataset. 
Figure. 2 illustrates the R-squared measure for each ML 
model. Aside from the boxplots, the group of the R-
squared in the test dataset was represented with a histo-
gram. The results demonstrate that the DNN-3x3 had 
the best predictability. 

An interesting observation in Figure. 2a concerns the 
median value of the DNN-3x3 and XGB-3x3. The me-
dian for the DNN-3x3 model was 0.67 and 0.64 for the 
XGB-3x3. This indicates that when comparing the 
group of R-squared, the DNN-3x3 had more test mod-
els (20 test models) with R-squared higher than 0.67 
compared to the XGB-3x3 (only 14 test models). The 
comparison of the XGB and the XGB-3x3 showed that 
the XGB-3x3 provided better predictability compared 
to the XGB. 

Visual comparison of the ML models prediction 
Figure. 3 shows the results for the ML models and the 
traditional PEM and seismic model (reference solution). 
From the figure, it is clear that all three ML models 
were able to predict the main 4D signals. For example, 
all ML models were able to predict hardening signals 
around all injectors. One could compare the ML predic-
tions with the reference solution in the location of injec-
tor in the southwest (I1). The softening signals due to 
the gas out of the solution in the center and the right 
flank of the reservoir were also predicted by all three 
ML models. Aside from prediction of the main 4D 
signals with all the model, the DNN-3x3 was able to 
estimate more details in the 4D map. For instance, the 
DNN was successful in recovering details as shown 
with blue arrows in the figure. For some softening sig-
nals especially around injectors, the DNN-3x3 model 
was able to predict them as shown in Figure. 4 where 
the softening signals around Injector 5 were estimated 
by the model. The reason could be in the DNN architec-
ture used for our research, where different convolution-
al layers could be able to capture more features in the 
input data to train the DNN algorithm. 

Conclusions 

Quantitative applications of 4D seismic data require a 
4D seismic forward model with a petro-elastic model 
then followed by a seismic model. This paper proposed 
a very fast alternative 4D seismic forward model to 
replace the traditional approach with machine learning 
models (S4D-Proxy). The specific conclusions and 
applications of the S4D-Proxy are as follows: 

1. The DNN-3x3 model performed better than the 
XGBoost models. Therefore, we recommend this 
model as an alternative fast forward model. 

2. The immediate application of the S4D-Proxy is 
inside 4D seismic history matching to fasten the 
process. 

3. S4D-Proxy model could also be considered as an 
alternative forward model to invert saturation-
pressure changes from 4D seismic data. 
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Figure 2: R-squared measure for different ML model: (a) 

boxplots of the R-squared measures and (b) histograms of 

the quantitative measure. 

Figure 3: dRMS predictions with different ML models. 

Figure 4: DNN-3x3 model predicted small-scaled softening 

signals especially around injectors. 

https://doi.org/10.1016/j.geoen.2023.211460
http://www.unisim.cepetro.unicamp.br/en/research/introduction
mailto:unisim@cepetro.unicamp.br
http://www.unisim.cepetro.unicamp.br/en

