
Introduction 

Reservoir simulation is essential in the development and 

management of oil reservoirs, as it is used to forecast the 
reservoir behaviour, which is vital in the decision-making 

process. However, the actual properties of the sub-surface 

are highly uncertain, and thus so are the appropriate choic-

es of the reservoir model input parameters and the predic-

tions based on these models. Therefore, to obtain a reliable 

production forecast, reservoir models consistent with the 
dynamic data available from field production are identified 

in a process known as data assimilation. However, it can be 

too expensive computationally to perform a full compre-
hensive uncertainty analysis. A successful method within 

this context is that of uncertainty reduction via Bayes linear 

emulation, which solves the speed problem and facilitates a 
detailed exploration of input parameters and a robust sub-

sequent uncertainty analysis.  

This work describes the iterative emulator-based Bayesian 
uncertainty analysis methodology and concepts used. See 

Ferreira et al. (2019) for further information. 

Optimization versus Exploration 

Many methods seek to optimise the match between reser-

voir simulator output and history data and hence produce 

one or a relatively small number of optimised reservoir 
simulator evaluations (Figure 1a). In many cases, this ap-

proach does not lead to adequate uncertainty analysis. In 

fact, a full uncertainty analysis demands a comprehensive 
exploration of the uncertain input parameter space of the 

reservoir model, to identify all input parameter configura-

tions that would lead to acceptable matches between reser-
voir simulator output and history data (Figure 1b and Fig-

ure 1c). 

Usually, a vast number of simulation runs to perform the 

uncertainty analysis is required, which becomes a critical 

issue. The challenge needs to be addressed considering the 

possible drawback of identifying only a partial subset of 

the input parameters consistent with observed data (red and 
blue points in Figure 1d). Critically, these subsets will 

result in unjustifiable forecasts that are both biased and 

overconfident, which directly lead to sub-optimal decision 

making. Figures 1d and 2 demonstrate this principle: the 

blue points and red points lie in different parts of the ac-

ceptable input space. Both are consistent with the history 
data, but the forecasts from the blue points or red points on 

their own are biased high/low while simultaneously being 

overconfident. This problem is even worse when the ac-
ceptable input space is composed of disconnected regions, 

in which case optimisers will often get stuck in one of these 

regions, again leading to biased, overconfident forecasts. 
A full exploration of the input space is, therefore, critical. 

Hence, we construct emulators and employ iterative uncer-

tainty analysis to reduce the reservoir uncertainty for given 
observed data carefully. The slight inaccuracy of the emu-

lator causes the difference between the exploration final 

result using emulation (Figure 1d) and simulation (Figure 
1c), that in turn is a computer model which is not a perfect 

representation of the real system. The iterative process used 

allows to obtain more detailed emulators at each iteration 
and reduce such difference. 

Emulation 

An emulator is a statistical construct that seeks to mimic a 

complex physical model, such as the reservoir simulation 
model, but which is several orders of magnitude faster to 

evaluate. The emulator provides an understanding of the 

structure of the model’s behaviour and can replace the 
simulation model in many complex calculations. An emu-

lator provides not only an estimate of the simulator model 

output at an unexplored input location but also an associat-

ed uncertainty statement regarding that estimate. 

The emulator is a vector function represented by: 

where the vector x is the list of reservoir input parameters 
such as water-oil contact and the vector f(x) is the list of 

model outputs, such as fluid rates at different production 

times, with individual outputs denoted by fi(x). The subset 
of the inputs x that are most influential for output fi(x) is the 

vector of active inputs xAi for each output i. 

The first term on the right-hand side of eq. (1) express the 
global variation of fi(x), where βij are unknown scalar coef-

ficients and gij are known deterministic functions of xAi, a 

common choice being low order polynomials. The term ui

(xAi) is a Gaussian process over xAi that expresses the resid-

ual local variation in fi(x) not captured by the trend, and the 

nugget δi(x) is an uncorrelated term that models the effects 

of inactive variables as white noise. 
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Figure 1: 2D input space coloured by likelihood such that high 

values are desirable: (a) optimisation approach, (b) full analysis - a 

vast number of input configurations considered, (c) full analysis - 

acceptable matches using simulator, (d) two different subsets of the 

acceptable set (red/blue) (e) full analysis - acceptable matches using 

emulation. 
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Figure 2: Schematic production data from Figure 1d subsets (red 

lines - red points, blue lines – blue points, black error bars – histori-

cal data) . 
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Figure 3 presents the schematic process to construct an 

emulator. A set of simulation runs is designed considering 

the uncertain inputs and then simulated using computer 
software. We use both inputs, and correspondent model 

outputs to construct the mathematical equation that relates 

them, which is then used as a substitute for the reservoir 
model depending on the objective of the project. 

Figure 4 shows an example of a 1D emulator for the func-

tion , for which six model evaluations have been per-

formed, given by the black dots. The emulator expectation 
evaluated over a large number of input points is given by 

the blue line, while the green lines give the emulator credi-

ble interval. We note that even after only six evaluations, 
the emulator expectation mimics the shape of the sine 

function well. Also, we see that the credible interval is 

large in-between model evaluations where the emulator is 

less informed, but shrinks to zero close to the evaluations 

as is desirable for a deterministic function. 

The emulator expectation and variance are used to compute 
implausibility measures required for the global parameter 

search, as presented below. 

Uncertainty Reduction via Bayes Linear Emulation 

Our approach to uncertainty reduction is based on the use 

of  Bayesian emulators to evaluate the input space effi-

ciently and implausibility measures to determine which 
part of the input space can be discarded from further inves-

tigation i.e. deemed implausible. 

Figure 5 shows an example of the first wave of an uncer-
tainty reduction via Bayes linear emulation as applied to 

the function. Figure 5a has the same emulator as that of 

Figure 4, but now a single observation has been included 
(solid black line). The error bars on this observation are 

represented as the black dashed horizontal lines. The im-

plausibility calculated is represented by the coloured bar 
along the x-axis, with implausible x input coloured in red, 

borderline coloured yellow, and non-implausible inputs 

coloured green. We note that even for such a simple emula-
tor and after a single wave, most of the input space is red 

and hence ruled out, and therefore does not warrant further 

investigation via additional model runs. 
However, as there is substantial emulator variance through-

out much of the non-implausible region, we know that a 

wave 2 will be beneficial. Figures 5b to 5d show the results 

of adding three runs, sequentially. We see that the point 

included in Figure 5b, is highly informative, and the emula-
tor variance has significantly been reduced. Including the 

next two points as shown in Figures 5c and 5d provide 

much less dramatic improvements and result in a more 
modest reduction of the non-implausible region. Figure 5d 

also highlights that the emulator variance is now much 

smaller than the observation error variance (as the green 
lines are narrower than the horizontal dashed lines), and 

hence that further runs of the model would not provide 

further input space reduction. Hence the stopping criteria is 
reached and the process terminates. 

This process is usually very effective at input space reduc-

tion because it uses a fast statistical construct of the reser-

voir, focuses on identifying non-implausible inputs instead 

of directly chasing acceptable ones, perform the parameter 

search iteratively and naturally identifies disconnected 
regions of acceptable inputs. 

Conclusion 

Reservoir simulation is an essential tool for decision mak-

ing, as it is used to forecast reservoir behaviour. Therefore, 

appropriate treatment of available historical data and reser-

voir uncertainties is necessary to provide reliable simula-

tion models to be used in reservoir development and man-
agement. However, it can be too expensive computational-

ly to perform a full comprehensive uncertainty analysis of 

the reservoir model. This work presented the description of 
the Uncertainty Reduction via Bayes Linear Emulation 

methodology, which is one way to solve the speed problem 

and enable a detailed exploration of input parameters and 
robust subsequent uncertainty analysis. 
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Figure 3: Schematic process to construct an emulator. 
 

Figure 4: An example of a 1D emulator. 
 

Figure 5: Uncertainty reduction via Bayes linear emulation as appli-

ed to the toy example: (a) the six model evaluations in the first wave, 

(b)-(d) the three evaluations in wave 2, included sequentially. 
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(c) (d) 
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