
Introduction 
This text is a brief compilation of a paper published 
in Inverse Problems in Science and Engineering 
(Maschio and Schiozer, 2017), which proposes a new 
methodology for Bayesian history matching (BHM). 
BHM is the manner of treating the history matching 
problem in a formal probabilistic point of view (using 
Bayesian formalism) toward a framework for 
quantification and reduction of uncertainty in 
production forecasts. 

According to the Bayes’ theorem, the posterior 
probability distribution, p(m|O), is given by: 

where m represents an instance of the 
parameterized reservoir model, c is a  normalization 
constant, p(m) is the prior distribution and p(O|m) is 
the likelihood given by: 

where 

where Oi is the observed data, S(m)i is the results 

obtained using m in the flow simulator, N is the total 

number of observed data and σd,i is the standard 

deviation of the observed data errors. 
In the above equations, it is assumed that different 
vectors of observed data (observed water rate in a 
given well for example) are uncorrelated and that 
the measurement errors in observed data follow a 
Gaussian distribution. 

Due to high nonlinearities involved in BHM problems, 
it is generally impossible to express the posterior 
distribution in a closed form. Thus, it is necessary to 
apply sampling techniques to solve the problem. 
Therefore, BHM consists of sampling the posterior 

distribution represented by Eq. 1. 

Markov chain Monte Carlo (MCMC) 
MCMC is a sequential sampling method based on 
Markov chain concept, which is a sequence of 
random variables that depends on its history only 
through the previous state. A Markov chain evolves 
by causing a perturbation around the current state. 
The new state is accepted or not based on a 
probabilistic criterion. 
MCMC is a robust sampling method able to produce 
samples of virtually any posterior distribution and 
has been applied to solve a wide variety of complex 
practical problems. However, history matching is 
typically a highly non-linear inverse problem, which 
leads to very complicated posterior distribution, with 
several disconnected modes. Thus, sequential chain, 
the traditional method, can be trapped into local 
modes. 
The objective of this work is to present a new 
methodology that uses parallel interacting MCMC to 
solve the BHM problem. The key idea is to start 
several chains in parallel, each at a different 
perturbation size (defined by scaled proposal 

variance, σ), allowing the chains to exchange 

information through swaps among their current states. 

Methodology 
The proposed methodology is composed of the 

following steps: 

1) Set the number of parallel chains (M), the number 
of iteration (or states) per chain (n) and set k = 

1. 

2) Define M starting points (one for each chain). 

3) Generate M reservoir simulation models. For k = 
1, M corresponds to the starting points of the 
chains. For k > 1, M is the set of states (one state 

per chain) proposed in the Steps 6 and 7. 

4) Submit the M reservoir simulation models to run in 

parallel in a cluster of computers. 

5) After the execution of the reservoir simulations, 

compute p(m|O) for each model. 

6) Update each chain independently using the 
Metropolis-Hastings criterion (within-chain moves) 

each chain having a specific scaled proposal. 

7) At each iteration, draw two integers uniformly 
distributed between 1 and M (indexes of the 
chains) and swap the states of the chains 
associated to the sampled indexes (inter-chain 

moves). 

8) While k is lesser or equal to n, increment k and 

return to Step 3. 

9) Assess the final results. 

The key idea is illustrated in Figure 1 using a simple 
example. The chain with greater variance are 
responsible for the diversification (scattered 
sampling) and the chain with small variance are 
responsible for the intensification (refined sampling). 
This strategy allows escaping from local modes, 
exploring efficiently multi-modal posterior 
distributions. 

Application and Results 
For validation purposes, the methodology was 
initially applied to a cross-section model (Figure 2). 
The uncertain parameter is the horizontal 
permeability of the layers 2 and 3 for the Case 1A 
and layers 1, 2 e 3 for the Case 1B. For the Case 
1A, Kx1 is fixed in 1000 mD. In Maschio and 
Schiozer (2017) two more cases were studied: 
Case1C, with 5 layers and Case 2, a realistic 
reservoir modeled with geostatistical techniques. 
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Figure 1: Illustration of parallel MCMC method (3 pa-

rallel chains with n iterations). 

Figure 2: Cross-section model. 
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Figure 3 shows the surface of the posterior 
distribution for the Case 1A using discrete values of 
Kx2 and Kx3. To generate this figure, the ranges of 
Kx2 and Kx3 were divided into 30 equally spaced 
values and combined to form a grid with 900 
combinations. After running the flow simulator for the 
900 models, the value of p(m|O) was computed for 
each node of the grid. Clearly, we can see four 
disconnected modes, separated by a region with 
very low probability (nearly zero). 

Figure 4 shows, in green, the samples accepted 
during the sampling process (a sample of size 10000 
was generated for both sequential and parallel 
algorithm). In blue, are the models with OFN (OFN = 
OF/N) smaller than 1.0 (the number of models is 
indicated inside the figure), which means that the 
model misfit is in the order of one standard 
deviation. 

Figure 4(a) shows that the sequential algorithm got 
trapped in one of the local modes. On the other 
hand, the parallel algorithm sampled all local modes. 
Figure 5 shows a comparison between the sequential 
(a) and parallel (b) algorithms for the Case 1B. The 
blue points represent models with OFN smaller than 
1.0. The yellow points in these plots are permutation 

of the values of permeability of the three layers that 
were used to generate the history. As can be seen, 
there are a huge number of combinations, besides 
those yellow six points, that provide responses close 
to the history. It can also be seen that the parallel 
algorithm covered all regions formed by the 
connection of the yellow points. 
Other details about this work can be found in 
Maschio and Schiozer (2017). 

Final Remarks 
1) In this work, we have proposed an innovative 

application of a new class of parallel interacting 
Markov chain Monte Carlo to solve the Bayesian 

history matching problem. 

2) The methodology proposed in this work is well 
suited to overcome the drawbacks of the 
traditional sequential MCMC methods, because it 
allows escaping from local modes and explores 

efficiently the posterior distribution. 

3) This work may contribute to disseminate the use 
of parallel interacting Markov chains to explore 
the potential of distributing computing and may 
also encourage the application of the described 

method in other cases. 

4) Finally, the researches developed by the UNISIM 
are focused on robust methods capable  
of finding multiple solutions under probabilistic 
approaches to reduce uncertainties in reservoir  
attributes and production forecast. Methods that 
tend to deterministic solutions are not suitable to 

deal with this task.  
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Figure 3: Surface of the posterior distribution for the 
Case 1A. 

Figure 4: Cross plot of Kx2 and Kx3 (Case 1A): (a) 

sequential MCMC, (b) parallel MCMC. 

Figure 5: Cross plot for Kx1 and Kx2 (Case 1B): 
(a) sequential MCMC, (b) parallel MCMC. 
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