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Abstract 

POLIZEL, Guilherme A., Use of Quality Measurement Methods of Reservoir Simulation 

Models in Production Forecast, School of Mechanical Engineering, University of 

Campinas, Course Completion Assignment, 2018. 

 

Reservoir simulation is a technique widely used in petroleum engineering in several 

steps of the field exploration, such as history matching, selection of production strategy 

and production forecast, which impacts the decision-making processes. The reliability of 

the simulation models is crucial to ensure the accuracy of the production forecast, allowing 

the development of consistent and efficient strategies for maintaining or increasing 

petroleum production. Besides, the feasibility of an analysis is directly related to the CPU 

time required by the study – which is greatly influenced by the amount of detail and 

complexity of the simulation model. Several works that proposes techniques to reduce the 

CPU time keeping an acceptable accuracy for the analysis can be found in the literature. 

However, we observed a lack of studies related to the correlation between the quality of 

solution and the invested effort in applying such techniques mentioned above.  

Thus, the objectives of this work are: (1) select relevant indicators, through a 

literature review, capable of estimating the quality of a risk curve regarding a defined 

reference, applying the selected indicators to observe the evolution of the quality of a risk 

assessment compared to the applied computational effort (simulation time) and (2) select 

the most suitable indicator for the study. 

Four quality indicators were studied, and we concluded that the most suitable for 

assessing quality of forecast production is the Normalized Quadratic Deviation with Signal 

(NQDS), which is capable of measuring the quality of the analysis and setting limits of 

acceptance for a decision taker.  
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Nomenclature 

Latin letters  Unit 

𝑏𝑙 Block structure - 

𝐶𝑝 Rock compressibility  (
𝑘𝑔𝑓

𝑐𝑚2
)

−1

 

𝑓𝑓 Multiplication factor in completed wells - 
𝐾𝑟 Relative permeability - 

𝐾𝑧 Vertical continuity - 

𝑆𝑜 Oil saturation  

𝑆𝑜𝑟 Residual oil saturation  

𝑆𝑤 Water saturation  

𝑆𝑤𝑐 Critical water saturation  

Np Cumulative oil production m³ 
Wp Cumulative water production m³ 

Abbreviations  - 
AAPE Absolute arctangent percentage error - 
APE Absolute percentage error - 
AQD Acceptable Quadratic Deviation - 

DLHG 
Discretized Latin Hypercube sampling method 

combined with geostatistical techniques 
- 

HFM High Fidelity Model  
LHS Latin Hypercube Sampling - 
LFM Low Fidelity Model - 
MAAPE Mean Arctangent Absolute Percentage Error - 
MAE Mean Absolute Error - 
MAPE Mean Absolute Percentage Error % 
MSE Mean Squared Error - 
NMSE Normalized Mean Squared Error - 
NQDS Normalized Quadratic Deviation with Signal - 
OF Objective function - 
OGR Oil group - 
OIW Oil injector well - 
OPL Oil platform - 
OPW Oil producer well - 
PI Productivity Index - 
QDS Quadratic Deviation with Signal - 
RFo Oil Recovery Factor % 
RMSE Root Mean Squared Error - 
SMAPE Symmetric Mean Absolute Percentage Error - 
SD Simple Deviation - 
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1 INTRODUCTION 

Reservoir simulation is a technique widely used in petroleum engineering in several 

steps of the field exploration, such as history matching, selection of production strategy 

and production forecast, which impacts the decision-making processes.  

The simulations models are built and constantly updated and optimized so that they 

can reproduce the physical conditions of the real reservoir. This process is represented by 

the Closed Loop Reservoir Management and Development (Figure 1.1), which is divided in 

three steps: model construction (green), application of real observed data for history 

matching and uncertainty reduction (red) and the selection of production strategy aligned 

with the decision-making process (blue). 

 

Figure 1.1: Closed Loop Reservoir Management and Development (Schiozer et al., 2015) 
 

 The reliability of those models is crucial to ensure the accuracy of the production 

forecast, allowing the development of consistent and efficient strategies for maintaining or 

increasing petroleum production. However, all parameters that are used as input for the 

simulation models (such as porosity and permeability) carries a level of uncertainty, once 

they are estimated from the available data, that are limited most of times. Under these 

conditions, it is necessary that strategy decisions of production and exploitation should be 

based on a consistent risk analysis. 

Risk assessment requires a more comprehensive analysis of the generated 

scenarios (a simulation model that consists in a combination of technical, economic and 

geological uncertainties), based on a range of uncertainties about the volume of 
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hydrocarbons in place and the performance of the reservoir, such as the cumulative 

productions and pressures. This assessment requires the simulation of several different 

models, which is expected to compose an impartial sampling of the reservoir 

characteristics. However, the idea of simulating several scenarios are often faced with 

resistance, due to constrains of time and processing resources.  

The accuracy of the models is also related with the grid that is built and other 

parameters. Usually, the more discretized the grid is, the greater the capacity of the model 

to produce reliable results, but it also depends on the heterogeneity level of the reservoir. 

Nevertheless, models that have a high level of complexity and heterogeneity lead to higher 

CPU time, making the probabilistic approach a problem to be solved.  

Based on this context, many researchers have been focusing their effort to develop 

methods and techniques that can speed up processes which demands a high 

computational effort in the petroleum industry. Several techniques are presented in the 

literature – Emulators, Response Surface Methodology, Sampling methods (such as the 

Latin Hypercube sampling), Upscaling techniques and others that can be applied in 

several steps of an oil reservoir study.  

We observed, though, that there is a lack of studies related to the correlation 

between the quality of solution and the invested effort in applying such techniques 

mentioned above. Thus, this work aims to define a methodology that allows measuring the 

quality of the solutions versus applied effort in models with different levels of fidelity in the 

risk analysis step of a petroleum field study. Additionally, use this methodology to calibrate 

a low-fidelity model using few simulations of high-fidelity ones, increasing the accuracy to 

obtain higher accuracy then just using high-fidelity versions. 

  



 

 

11 

 

2 OBJECTIVES 

In this work, we aim to:  

(1) select relevant indicators, through a literature review, capable of estimating the 

quality of a risk curve regarding a defined reference;  

(2) apply the selected indicators to observe the evolution of the quality of a risk 

assessment compared to the applied computational effort (simulation time) and 

select the most suitable indicator for the study, based on six factors: (1) 

Interpretation, (2) Finite Boundary, (3) Physical Significance, (4) Ease of 

Calculation, (5) Acceptance Limits and (6) Presence in the Oil & Gas Literature.  

The studies are conducted using a benchmark case created by the UNISIM group – 

a synthetic model based on Campos Basin, Namorado Field: UNISIM-I-D. Considering the 

following objective functions: cumulative oil production (Np), cumulative water production 

(Wp) for the whole field and wells, and oil recovery factor (RFo). 
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3 LITERATURE REVIEW 

The literature review is divided in two main topics. The first addresses to methods of 

risk analysis and production forecast of petroleum fields and the second topics deals with 

quality indicators used in the field of study. 

3.1 Risk analysis and production forecast 

Due to high complexity of the processes that are responsible to mold oil reservoirs, 

any description of its structure and properties carries a significant level of arbitrariness 

and, despite the evaluation of all observed data, there are infinite possible descriptions of 

where the hydrocarbons are contained. Once there is possible to generate nearly endless 

realizations for a same dataset, this problem ceases to be deterministic and began to be 

probabilistic. 

The development phase of a petroleum field is characterized for high investments, 

substantial uncertainties in the oil recovery with direct impact in the economic performance 

of the projects. In this phase, coexist: (1) geological uncertainties, associated with the 

recoverable volumes and characteristics of the flow, (2) operational uncertainties, related 

to the system’s availability, and (3) economic uncertainties, such as oil price, investments 

and operational costs. The production forecast under a probabilistic approach allows 

quantifying the impact of the uncertainties and their interaction. Thus, risk assessment is a 

necessary analysis that may assist the decision-making process. 

Though the risk analysis does not guarantee the success of a decision, its 

systematic application ensures remarkable advantages. The main one is the quantification 

of losses and sub-optimal development when the performance of a field is different from 

the expected. 

Risk analysis based on a probabilistic approach started to be widely applied in the 

80’s, when oil prices began to decrease, the projects became less profitable and the initial 

investments became higher (due to the discovery of petroleum fields in greater depths, for 

example). Schuyler (1998) recommends the application of probabilistic techniques in the 

estimative of reserves, highlighting that probabilistic tool improves the uncertainties 

characterizations, producing more precise results. 
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Ovreberg et al. (1990) proposed a procedure based on 3 steps: sensitivity analysis; 

subjective evaluation of uncertainties’ probabilities and Monte Carlo simulation. The 

structural uncertainties are quantified through the adoption of three conceptions of the rock 

volume, obtained from the interpretation of seismic and geological data: a probable, a 

pessimistic and an optimistic model. The relation between the recovery and the total 

volume of hydrocarbons is obtained through the simulation of the optimistic and the 

pessimistic model, using average parameters of characterization. The application of the 

methodology is easy and inexpensive, but its major problem is the impossibility of 

considering probable non-linearity of correlated variables, as well their spatial 

dependencies. 

Loschiavo (1999) sought to develop a methodology that allows estimating 

probabilistic profiles of hydrocarbon production parameters, considering geological 

uncertainties on the field’s development. In addition, the basis of that methodology is the 

decision tree technique. The author concludes that in case the most critical attribute is 

much more expressive than the others (conclusion obtained from the sensitivity analysis), 

it is recommended an increase in the number of levels for this attribute.  

Steagall (2001) developed an enhancement of Lochiavo’s methodology, by studying 

the development and application of this new method in the analysis of the impact of 

reservoir uncertainties in production forecast and risk analysis of an oil field. The 

methodology is based on the use of the flow simulator, generating scenarios through a 

decision tree with some critical parameters selected in a sensitivity analysis study. The 

application was made in a real field of Campos Basin, with available data obtained in the 

delimitation step, with few drilled wells, 2D seismic and the strategy of production was 

fixed. The methodology showed a reduction in the risk of the estimative of the NPV, due to 

the reduction of structural, volumetric and horizontal permeability uncertainties. 

Steagall and Schiozer (2001) applied the derivation tree methodology in a real case 

of Campos Basin, obtaining the risk of the forecast of cumulative oil production and net 

present value. The authors proposed the use of representative models of the geological 

uncertainties to integrate the risk analysis with the production strategy of the field. 

Santos (2002) studied the influence of the production strategy in the risk analysis 

processes. The risk methodology consists in defining the uncertain parameters, building a 

base model to simulation, selecting the critical attributes through sensitivity analysis, 

simulate all possible models, express the risk using the net present value as objective 
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function and choosing some models to represent the geological uncertainties. Optimization 

procedures are applied in the base model and in the other models. The author verified that 

the gain in the net present value is inexpressive regarding the uncertainties and changes 

in the production strategy is not relevant, concluding that the adoption of an only 

production strategy can be applied in that case. 

Costa (2003) observed that the complexity of the risk analysis processes is due to 

three main factors: (1) a high investment, (2) a high number of uncertain variables and (3) 

a strong dependence of the results with the definition of the production’s strategy. To 

mitigate this complexity and reduce the required computational effort, some simplifications 

are performed. Although, the author pointed the lack of methodologies that can quantify 

the impact of the uncertainties and of those simplifications.  

Because of this, the researcher developed a methodology through a detailed study 

about risk analysis in the development’s phase through the quantification of simple 

techniques to accelerate the processes without lose its precision. It is substantiated in 

treatment of attributes, gradual combination, and aggregation of attributes and use of 

representative models to integrate the effects of different types of uncertainties with the 

definition of the production strategy.  

The methodology has proven to be able to give support to the decisions with higher 

reliability, showing the critical points of the process and quantifying the impact of the 

simplifications that can be done to make standardized and user-friendly processes. 

Ligero et al. (2003) used the methodology developed by Loschiavo (1999) and 

applied by Steagall (2001) to perform risk analysis in the development phase of an oil field. 

To improve the computational performance, they used an automated procedure to 

elaborate the simulation models, combined with parallel processing, which allowed the 

simulation of many scenarios simultaneously. Three representative geological models 

were proposed and they were applied to integrate geological and economic uncertainties 

to perform the risk assessment. 

The techniques described before (Monte Carlo and Derivation tree) attempt to 

perform a probabilistic analysis of the geological model, considering of all the possible 

scenarios considering their uncertainties and associated probabilities. These methods 

usually require many simulation models to cover all the solution space, leading to 

excessive computational effort and sometimes rendering such analysis impractical. Due to 

this, many works are developed aiming to study methods capable of reducing the 
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computational effort required by these techniques or even applying new ones. We present 

some solutions proposed by researchers to solve those problems.   

Zabalza-Mezghani et al. (2004) proposed several statistical methods, mainly based 

on the experimental design technique, to solve practical problems throughout the field life: 

evaluating geological scenarios; comparing and ranking impact of uncertain parameters on 

production profiles; assessing production forecast under uncertainties; selecting relevant 

parameters for production scheme optimization and performing an economic risk 

evaluation. The authors showed the effectiveness of these methodologies both in real and 

synthetic fields.  

Another way to reduce the computational effort required by a simulation of a model 

is to apply upscaling techniques to reduce the grid size of the geological model, 

transforming into a coarser model. Although, it is difficult to select a grid size that could 

represent an adequate balance between precision of risk assessment and computational 

effort. Ligero et al. (2004) studied the effect of the grid size on this process. The authors 

developed a methodology (1) to select an adequate grid size and (2) to speed up the risk 

analysis process. They showed practical applications of upscaling in a probabilistic risk 

assessment using a model of a petroleum field with geological uncertainties represented in 

a fine grid. 

Madeira (2005) performed a comparison between some techniques used to 

accelerate and simplify the risk analysis process – the simulation of Monte Carlo, 

derivation tree, experimental design with the development of fast models (also known as 

proxy models) associated with the response surface methodology and some combinations 

of these techniques. The author performed this study in an offshore field and showed it is 

possible to significantly reduce the number of simulations using statistical models and 

exalted that some simplifications may change the decision process. 

Lechner et al. (2005) investigated an approach that uses Artificial Neural Networks 

(ANN) to integrate the reservoir simulation to speed up processes which requires 

excessive computational time. As a first step, the authors selected the most sensitive 

parameters which affect the performance of the simulation using a limited number of runs. 

By training the ANN, they developed a model capable of interpolating between the 

individual simulation scenarios. In this way a large variety of realizations can be 

approximated by a limited number of reservoir simulation models. The ANN were used in 

Monte Carlo simulation to generate the probability distribution of all possible outcomes. 
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Due to the very low computational cost of the ANN, many realizations can be calculated in 

a short amount of time.  

Reis (2006) proposed three methodologies based on Experimental Design and 

Response Surface Modeling to model flow simulations. The first method uses two different 

RSM: one to represent the decision variable and other to represent an objective function 

that consider dynamic data, enabling the risk analysis with history matching. In the second 

methodology, a maximum tolerance of the objective function is used as a filter to select the 

models taken on risk analysis. The last one is similar to the previous method, but the ANN 

replaces the RSM to model the flow simulation. These methodologies were applied to two 

different reservoirs: a semi-synthetic case and a real case. The author showed that it is 

possible to improve the quality of the risk analysis, constraining the possible range of the 

uncertainty variables by taking into account dynamic data. 

Risso et al. (2008) compared the precision of three methods in the risk assessment 

of oil fields: Derivation Tree Technique, Monte Carlo simulation and Response Surface 

Methodology associated with the Box-Behnken and central composite designs. Two cases 

representing a development field with five uncertain attributes were studied, and the 

objective functions analyzed were net present value and cumulative oil production.  The 

response surface methodology was capable of efficiently substitute the reservoir 

simulation to obtain the risk curves. The use of this technique allowed a reduction in 

approximately 83% of the number of simulations while maintaining the precision of the risk 

curves. However, the authors emphasize the importance of the correctly use of the 

statistical design methodology, because the different possible surface responses that can 

be obtained may affect the results significantly.  

Arinkoola et al (2015) performed a study to examine several Design of Experiments 

(DoE) methods for uncertainty quantification of production forecast during reservoir 

management. Considering all uncertainties for analysis can be time consuming and 

expensive. Uncertainty screening using experimental design methods helps reducing 

number of parameters to manageable sizes. The authors studied three families of designs 

(sensitivity be one factor at-a-time, fractional experiment, and Plackett-Burman design) 

used for screening and four (Box-Behnken, central composite, D-optima and full factorial) 

used for response surface modeling. For screening, the authors concluded that there was 

no added advantage using fractional factorial instead of Plackett-Burman design. The best 

model for uncertainty quantification must be selected based on the reservoir management 
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objectives. BB method was adequate to determinate P10/P50/P90 and associated models. 

On the other hand, to evaluate future development strategies, stimulation and the needs 

for acquiring additional information, full factorial and central composite design are more 

efficient predictors. 

Jablonowski et al. (2016) described the method and results of a probabilistic risk 

analysis used to provide a quantitative basis for a complex and high-stakes design 

decision for a subsea oil project. The available geological information (obtained from a 

small number of exploration and appraisal wells) was coupled to a wellbore fluid dynamics 

model (defined as “system model”) to simulate operational outcomes for potential well kill 

operations. The authors compared two methods of probabilistic approach: the full 

probabilistic and the design of experiments approach, which are used to obtain a surrogate 

equation that are used in place of the system model. 

The authors showed that the system model could be used to specify a risk analysis 

to support risk-based design and that the surrogate models that are based on the 

experimental designs yield very good fits to the system model results, with a 99% 

reduction in the number of iterations.  

Polizel et al. (2016) used proxy models associated with the Latin Hypercube 

Sampling technique to perform the risk assessment of four objective functions: cumulative 

oil production, cumulative water production, oil recovery factor and net present value. The 

authors also compared to design of experiments: full factorial and Box-Behnken design. 

The application was performed in a medium-complexity synthetic case with rock, fluid and 

operational uncertainties without geostatistical realizations. It was shown that (1) the Box-

Behnken Design can reduce the number of realizations and keep the accuracy of the 

results and (2) the proxy models can perform a risk analysis with reduced computational 

effort and substitute the reservoir simulator on this application. 

Naderi et al. (2016) studied the impact of engineer and geological uncertainties in 

the recovery factor of a gas reservoir. The authors used four DoE (Box-Behnken, full 

factorial, central composite and uniform design) to develop the recovery response function, 

through the RSM. Then, the genetic algorithm (GA) were applied to optimize the 

combination of these DoE for prediction of final recovery factor distribution. They showed 

that (1) the uncertainty associated with ultimate recovery factor depends mostly on 

average reservoir permeability, permeability anisotropy, tubing head pressure and aquifer 
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size and (2) the application of the GA allowed achieving a higher performance over the 

conditional uncertainty assessment methods. 

Another important technique that can reduce the number of simulations needed to 

perform a risk analysis is the Latin Hypercube. Risso et al. (2009) sought the best way to 

perform the distribution of trails and verify the influence in the variation of this number 

when acquiring the risk curves, through the Latin Hypercube Sampling technique. This 

methodology was also compared to the derivation tree technique, aiming to reduce the 

number of simulation keeping the accuracy of the results. A complex and a high-

heterogeneity model were used, and three objective functions (cumulative oil production, 

oil recovery factor and net present value) were studied. The authors used 9000, 3000 and 

200 trials. The results showed that the number of trials did not influence the results, once 

the curve obtained with 200 trials had almost no difference from the obtained with 9000. 

This works showed the efficiency of the method, which can be used with a reduced 

number of simulations, saving computational effort. 

Santos et al. (2014) compared two methods of risk analysis of oil fields: The Monte 

Carlo sampling technique combined with joint proxy models (JMM) and the Discretized 

Latin Hypercube sampling method combined with geostatistical techniques (DLHG) in 

terms of (1) accuracy of the results, (2) computational cost, (3) difficulty in the application, 

and (4) limitations of the methods. The application was performed in a synthetic model 

containing geologic and operational uncertainties and the reference response were 

obtained using the classic Monte Carlo simulation with a very high sampling number. Both 

methodologies were able to produce reliable results when applied to a complex reservoir 

comprising a large set of geostatistical realizations. However, the JMM presented a 

limitation due to the way it captures the effect of a geostatistical uncertainty, making the 

number of simulation runs growing exponentially. The DHLG method showed advantages 

as it obtained the same results from less than half of the simulation runs and presented 

smaller deviations from the reference curves. The application of this method is fast and 

direct, surpassing the other methodology in all used criteria. 

Schiozer et al. (2016) presented a methodology that combines different types or 

uncertainties, such as geostatistical realizations, reservoir structure and fluid 

characterization, using the fewest possible simulation runs through a Discretize Latin 

Hypercube sampling. Applying this methodology in a complex synthetic case, the authors 

showed that it was possible to produce reliable results using 100 or more simulations, 
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presenting insignificant variation regarding the reference curve (obtained with 3000 

scenarios using the Monte Carlo sampling). This work showed the main characteristics of 

this method: (1) it preservers the geostatistical consistency of parameters that vary 

spatially in the reservoir, (2) it needs few simulations runs to obtain reliable results, (3) it is 

easy to implement, and (4) it is flexible for use in cases with different requirements of 

precision, computational times and types of uncertainties. 

3.2 Quality indicators 

In this work, we intend to compare high, medium and low fidelity models and proxy 

models in terms of their capacity of prediction. Once risk assessment is the step to be 

accomplished using these models, we must choose a method that allows comparing the 

accuracy of the generated risk curves, once tiny errors can lead to a wrong decision 

taking. Thus, this topic presents the most common indicators to measure the quality of 

forecasting methods. Since this subject represents a whole field of study, we will only 

present methods that may be adequate for the reservoir simulation area. 

The history of the evaluation of forecast accuracy goes along with time-series 

analysis. The first tests for forecasting models were developed in 1939 by Tinbergen, in 

response to Keynes, who stated that theories must be confirmed if the data and statistical 

methods are employed correctly (Woschnagg et al, 2004).  

Given the importance of the statistical validation (defined as a comparison of the 

model’s predictions with the real world to determine whether the model is suitable for its 

intended purpose), Mayer et al. (1993) performed a research around statistical validation 

of time-series. The authors grouped validation techniques into four main categories:  

• Subjective assessment, which involves an evaluation by a number of experts in 

the field of interest; 

• Visual techniques, performing graphical displays of data feature, typically plots of 

both simulated data and observe data against a common independent variable;  

• Deviance measures applied when observed and simulated data can be paired 

according to time, location, treatment and so on. Deviance measures are based on 

the difference between simulated and observed data. 

• Statistical tests, which comprehends t-test, F-test and others, depending on the 

type of the model, the nature of variables and their complexity.  
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Since this work is looking for methods that measure the accuracy of the model 

based on the difference of risk curves, we must focus on deviance measures. In the 

previous study, Mayer pointed the three commonly used measures for numerical data – 

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean 

Square Error (RMSE), presented in Equation 3.1, 3.2 and 3.3. 

 

MAE =
1

n
∑(|𝑌𝑖 − 𝑌�̂�|)

𝑛

𝑖=1

 Equation 3.1  

 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ (

|𝑌𝑖 − 𝑌�̂�|

|𝑌𝑖|
)

𝑛

𝑖=1

  Equation 3.2  

 

RMSE = (
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1

𝑛
)

0.5

 Equation 3.3  

where 𝑌𝑖 represents observed values, 𝑌�̂� predicted values and 𝑛 the number of pairs. 

As MAE is in the same unit as the data and MAPE is relative, both can be 

informative measures, and MAE may be used for mean algebraic error. Algebraically, 

RMSE > MAE (due to the influence of squaring larger values). With squared deviations, 

RMSE can be useful in deriving statistical properties.  We also observe that for these three 

indicators, as close they are to zero, the better is the results. 

Some authors define limits of acceptability for these indicators but given that the 

model validity depends very much on both the type of the model and its intended uses, 

i.e., it is impractical to set a single absolute limit. 

For Makridakis (1993), MAPE is the best choice for general use. It is a relative 

measure that incorporates the best characteristics among the various accuracy criteria. 

Moreover, it can be used for both evaluating large-scale empirical studies and for 

presenting specific results. With this, the author studied ways of correcting some problems 

that can influence MAPE, such as: 

1. Equal errors above the actual value result in a greater APE (Absolute Percentage 

Error, Equation 3.4) than those below the actual value (e.g. when the observed 

value is 150 and the forecast is 100, MAPE results 33.33%, when the observed 

value is 100 and the forecast is 150, MAPE results 50%);  
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2. When the observed value is too small (usually less than 1), it can provide large 

percentage errors; 

3. In case of unusually large errors, when the value of 𝑌𝑖 is small, some absolute 

percentage error (APE) can become extremely large (outliers) and distort the 

comparison in forecasting competitions or empirical studies. 

𝐴𝑃𝐸 =
|𝑌𝑖 − 𝑌�̂�|

|𝑌𝑖|
  Equation 3.4  

The author solved the first problem by defining the symmetric Mean Absolute 

Percentage Error (sMAPE) as follows in Equation 3.5: 

𝑠𝑀𝐴𝑃𝐸 =
100

n
∑ (

|𝑌𝑖 − 𝑌�̂�|

|𝑌𝑖| + |𝑌�̂�|
2

)

𝑛

𝑖=1

 Equation 3.5 

In this study, the second and third problem should not be an issue, once the studied 

objective functions, such as oil and water production, presents high output values. 

Chen et al. (2004) evaluated forecast accuracy measures. The authors 

distinguished between stand-alone and relative accuracy. Stand-alone accuracy measures 

are those that can be obtained without additional reference forecast. The idea of relative 

measures is to evaluate the performance of a relative forecast to a benchmark forecast 

(specifically, the random walk). Since the reference forecast is a deterministic simulation, 

we cannot apply the random walk, which is a characteristic of a stochastic process. Thus, 

this work must focus on stand-alone accuracy measures.  

Besides the previously mentioned indicators, the authors proposed three others 

indicators that could be used in this work: Mean Squared Error (MSE, Equation 3.6), 

Normalized Mean Squared Error (NMSE, Equation 3.7) and the KL-N, based on the 

Kullback-Leibler (KL) divergence, presented in Equation 3.8. 

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑌�̂� − 𝑌𝑖)

2
𝑛

𝑖=1

 Equation 3.6 

 

𝑁𝑀𝑆𝐸 = (
∑ (𝑌�̂� − 𝑌𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

)

1
2

 Equation 3.7 

where �̅� is the mean of observed values. 
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𝐾𝐿 − 𝑁 = (
1

𝑛
∑

(𝑌�̂� − 𝑌𝑖)
2

𝑆𝑖²

𝑛

𝑖=1

)

1
2

 Equation 3.8 

where 

𝑆𝑖
2 =

1

𝑖 − 1
∑(𝑌𝑘 − �̅�𝑖−1)2

𝑖−1

𝑘=1

, �̅�𝑖−1 =
1

𝑖 − 1
 ∑ 𝑌𝑘

𝑖−1

𝑘=1

 Equation 3.9 

Among these indicators, the authors identified the same condition about MAPE and 

sMAPE as Makridakis: a major flaw when the true value of the forecast is close to zero. In 

addition, they concluded that the KL divergence-based measures achieved the best results 

in the study. 

Willmott el at. (2005) stated the advantages of MAE over RMSE. The authors 

pointed that although RSME is widely report in several studies, including in the climatic 

and environmental literature, it is inappropriate because it is a function of three 

characteristics of a set of errors, rather than one (the average error). RSME tends to 

became increasingly larger then MAE as the distribution of error magnitudes becomes 

more variable, and, it tends to grow larger than MAE with n
1

2. The authors observe there is 

no clear interpretation of RMSE or related measures, once it is an unambiguous measure 

of average error magnitude and they recommend that such measures should not be 

reported in the literature anymore. 

Kim et al. (2016) proposed another modification in MAPE measurement to 

overcome the problem of close-to-zero observed values, defined as Mean Arctangent 

Absolute Percentage Error (MAAPE). In this approach, they consider a triangle with 

adjacent and opposite sides that are equal to |𝑌𝑖| and |𝑌𝑖 − 𝑌𝑖|̂ respectively. The slop of the 

hypotenuse can be measure either as a ratio of |𝑌𝑖 − 𝑌𝑖|̂ to |𝑌𝑖|, ranging from zero to infinity; 

or, as an angle, varying from 0 to 90°. The authors saw the potential to use the slope as an 

angle as a measure of the forecast accuracy, overcoming the mentioned problems, and 

defined the MAAPE as follows in Equation 3.10. 

𝑀𝐴𝐴𝑃𝐸 =
1

𝑛
∑ (arctan (

|𝑌𝑖 − 𝑌�̂�|

|𝑌𝑖|
))

𝑛

𝑖=1

=
1

𝑛
∑(AAPE𝑖)

𝑛

𝑖=1

 Equation 3.10  

where AAPE is the Absolute Arctangent Percentage Error. 

For the authors, MAAPE preserves the advantages of MAPE; thus, MAAPE is 

scale-independent, can be interpreted intuitively as an absolute percentage error (as 
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closer to zero, the better the result) and is simple to calculate. In addition, the bounded 

range of the arctangent function (0 to 𝜋/2) allows the MAAPE to overcome the MAPE’s 

limitation of going to infinity as the actual value goes to zero. MAAPE is also more robust 

than MAPE due to the bounded influences of outliers; thus, it can be particularly useful 

when extremely large errors are due to mistaken or incorrect observations. 

Another indicator that could be useful four our work is the Normalized Quadratic 

Deviation with Signal – NQDS (Maschio and Schiozer, 2016), which is a method to 

quantify the quality of the adjust of production data and maps data. Forlan et al (2014) 

incorporated the NQDS in a methodology of multi-objective assisted history matching and 

uncertainties reduction using it for: (I) filter the best models considering well's history 

matching and (II) optimize the history matching of these models through a iterative process 

to minimize NQDS function. 

Saalfeld et al (2016) used the NQDS indicator to perform a numerical adjust of the 

productivity of a simple porosity model using as reference a double porosity one and to 

make a sensitivity analysis of pseudo properties’ parameters in a work with naturally 

fractured reservoirs. Usually this indicator is used to quantify the quality of the simulated 

values regarding the history data. On the other hand, this indicator can be used to quantify 

the misfit between risk curves. As a result, we can use them to verify the misfit between 

the studied curve and the defined reference. It is important to notice that this study does 

not assume possible inconsistencies between the history data and the simulator. 

To obtain the NQDS indicator, some definitions must be made: 

• Simple Deviation (SD) 

SD =  ∑(𝐸𝑠𝑡𝑖 − 𝑆𝑖𝑚𝑖) 

𝑛

𝑖=1

 Equation 3.11 

where 𝐸𝑠𝑡𝑖 is the 𝑖 estimated OF, given by the studied model and 𝑆𝑖𝑚𝑖 is the 𝑖 reference 

case OF. 

• Quadratic Deviation with Signal (QDS) 

 

QDS =
SD

|𝑆𝐷|
 ∑(𝐸𝑠𝑡𝑖 −  𝑆𝑖𝑚𝑖)

2 

𝑛

𝑖=1

 Equation 3.12 

Acceptable Quadratic Deviation (AQD) 
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AQD = ∑(𝑇𝑜𝑙 ∗ 𝑆𝑖𝑚𝑖)
2 

𝑛

𝑖=1

 Equation 3.13 

where 𝑇𝑜𝑙 is the tolerance of acceptance regarding the reference OF, usually defined with 

the researcher’s experience. Then, the normalized quadratic deviation with signal (NQDS) 

is defined as shown in Equation 3.14. 

 

NQDS =
QDS

𝐴𝑄𝐷
 Equation 3.14 

In resume, this indicator calculates the distance between the curves point to point, 

i.e., for each generated scenario that is used to build the risk curves. It can be noticed that 

the adjust is considerable acceptable when the NQDS value is between the interval of -1 

and +1 and the closer NQDS is to 0, the smaller is the difference between the curves. 

  



 

 

25 

4 METHODOLOGY 

The methodology is summarized in Figure 4.1. 

 

Figure 4.1: Proposed methodology for acquisition and study of the selected quality indicators. 
 

The proposed methodology is described as following: 

1) Definition of the case study + choice of accuracy methods 

This step aims to define the geomodel that the study will be carried out and to 

select, among several indicators which one (maybe ones) fits our work objective. 

2) Simulation of scenarios 

In this step, we simulate several scenarios in different sets of simulations (sets with 

50, 100, 200 until 2000 scenarios), using the DLHG (Discretized Latin Hypercube with 

Geostatistical Realizations, Schiozer et al. 2017) as sampling technique. 

3) Acquirement and analysis of quality indicator 

With all data generated in the previous step, the indicators are calculated for the 

defined OF (for both field and well) and then analyzed. 
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5 CASE STUDY 

UNISIM-I case study, described by Avansi and Schiozer (2015), is based on real 

dataset from Namorado field at Brazil (Guardado et al., 1989a; Guardado et al., 1989b). 

This case was designed as a benchmark for research studies on risk analysis, optimization 

of production strategy and history matching problems. 

A simulation model with uncertainties (UNISIM-I-D) was created in a process of 

reservoir studies in an initial field development plan under uncertainties. The model was 

built in a medium numerical grid resolution after the upscaling of a geo-model and with 

some information of UNISIM-I-R (Avansi and Schiozer, 2015) as illustrated in Figure 5.1. 

This model consists in an offshore oil field, 80km from the coastline, and represents a field 

project in 05-31-2013, including 4 years of production data (2013-2017) using the 

information from four production wells. The reservoir depth varies between 2900 to 3400m. 

There are well log measurements, core description, and seismic data to build the 

structural, facies and petrophysical models based on the previous steps of the reference 

model. The grid block is defined as 100 x 100 x 8 m discretized into a corner point grid 

with 81 x 58 x 20 cells (36,739 active cells). The exploitation strategy for the production 

forecast comprised 14 production wells (4 verticals from the history period and 10 

horizontals) and 11 horizontal water injection wells. The maximum time defined for field 

abandonment is 30 years (10967 days). 

 

Figure 5.1: Porosity map from UNISIM-I-D Low fidelity model. 
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5.1 Rock and fluid uncertainties 

The considered rock and fluid uncertainties are: relative permeability of water (𝐾𝑟𝑤), 

rock compressibility (𝑐𝑝), PVT table (𝑃𝑉𝑇), oil-water contact (𝑂𝑊𝐶), vertical continuity (𝑘𝑧) 

and the east block structure (𝑏𝑙). The uncertainties are shown in Table 5.1. 

Table 5.1: Rock and fluid uncertain parameters, type of uncertainties and levels/pdf considered in this study. 

Uncertainties 
Type of 

Uncertainties 
Levels/pdf* 

East block structure (𝒃𝒍), 
dimensionless 

Discrete Presence (0.70); Absence (0.30) 

Relative permeability of water 
(𝑲𝒓𝒘), dimensionless 

Discrete 𝐾𝑟𝑤0 (0.34); 𝐾𝑟𝑤1 (0.33); 𝐾𝑟𝑤2(0.33) 

PVT table (𝑷𝑽𝑻) Discrete 𝑃𝑉𝑇0 (0.34);  𝑃𝑉𝑇1(0.33);  𝑃𝑉𝑇2 (0.33) 

oil-water contact (𝑶𝑾𝑪), m 
Continuous 
(triangular) 

0, 𝑥 < 3024 

(𝑥 − 3024)/22500, 3074 ≤ 𝑥 ≤ 3174 

(3324 − 𝑥)/22500, 3174 ≤ 𝑥 ≤ 3324 

0, 𝑥 > 3324 

Rock compressibility (𝒄𝒑), 

(
𝟏𝟎𝟔𝒌𝒈𝒇

𝒄𝒎𝟐 )
−𝟏

 

Continuous 
(triangular) 

0, 𝑦 < 10 

(𝑦 − 10)/1849, 10 ≤ 𝑦 ≤ 53 

(96 − 𝑦)/1849, 53 ≤ 𝑦 ≤ 96 

0, 𝑦 > 96 

Vertical continuity (𝒌𝒛), 
dimensionless 

Continuous 
(triangular) 

0, 𝑧 < 0 

(2𝑧)/4.5, 0 ≤ 𝑧 ≤ 1.5 

(6 − 2𝑧)/4.5, 1.5 ≤ 𝑧 ≤ 3.0 

0, 𝑧 > 3.0 

*Probability density function 

5.2 Operational uncertainties 

A set of five discrete operational uncertainties were considered, and they are 

presented in Table 5.2. 

Table 5.2: Operational uncertainties and their probabilities distribution. 

Uncertainties 
Type of 

Uncertainties 
Levels/pdf* 

Multiplication factor in 
completed wells (𝒇𝒇) 

Discrete 0.70 (0.33);  1 (0.34);  1.40 (0.33) 

Oil producer well (𝒐𝒑𝒘) Discrete 0.91 (0.33); 0.96 (0.34); 1 (0.33) 

Oil injector well (𝒐𝒊𝒘) Discrete 0.92 (0.33); 0.98 (0.34); 1 (0.33) 

Oil platform (𝒐𝒑𝒍) Discrete 0.90 (0.33); 0.95 (0.34); 1 (0.33) 

Oil group (𝒐𝒈𝒓) Discrete 0.91 (0.33); 0.96 (0.34); 1 (0.33) 

5.3 Geostatistical realizations 

Geostatistical realizations (also called images) are stochastic uncertainties, this is, 

they correspond to a variable that has a non-linear impact on the response and can take 

infinite equiprobable discrete values.  
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The geostatistics allows obtaining a more realistic reservoir description, which 

honors geological properties and considers rock heterogeneities (Zabalza-Mezghani et al., 

2001). They represent spatially correlated reservoir properties (e.g. porosity, permeability 

and net-to-gross ratio). In this study, we used 500 equiprobable images to model the 

properties. We can observe in Figure 5.2 an example of the variability introduced by the 

images in porosity distribution of the reservoir. 

 

  

 

  

Figure 5.2: Porosity distribution given by four different images (UNISIM-I-D LFM). 

5.4 Objective Functions 

The objective functions studied within this case are: 

• Np – Cumulative oil production; 

• Wp – Cumulative water production; 

• RFo – Oil recovery factor. 

In the maximum time defined for field abandonment, which is 30 years. 
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6 RESULTS  

In this topic, we present the results obtained following the presented methodology. 

6.1 Methods and threshold 

The first step of the methodology was accomplished through the literature review 

presented in the Section 3 of this work – we chose to compare four indicators: MAE, 

RMSE, MAPE and NQDS due to the reasons showed in the Section 4.  

6.2 Definition of the case Study 

The case study is the UNISIM-I-D model, representing the low fidelity model – LFM 

(this case is detailed in the Section 5). 

6.3 Simulation of scenarios 

In this step, we simulated and gathered data from our LFM. A total of 63.500 

simulations were made. They were separated in sets of 50, 100, 200, 300, 500, 700, 1000, 

1500 and 2000 scenarios, each one being sampled and simulated 10 times in one 

processor taking approximately 20 minutes per scenario (the risk curves for each field OF 

are available at Appendix A). As said in Section 4, these scenarios are sampled 

throughout the DLHG technique and are totally random.  

6.4 Generate graph of quality of the solution vs effort 

With the results from the previous step we calculated the four indicators using as 

reference the average result from the 20000 simulations performed within the 2000 set of 

scenarios. They were calculated for each OF through a linear interpolation (once it is a 

point-to-point analysis), considering both field and wells. 

Therefore, we can head to the analysis of each one. First, we will separate them in 

two groups: Indicators that cannot reach a negative number – Group I (MAE, RMSE and 

MAAPE) and indicators that can reach a negative number – Group II (NQDS). 

• Group I 

Figure 6.4 shows the three indicators calculated for the field Np (Wp and RFo OF 

can be found in Appendix B). We can observe the behavior of the indicators regarding the 

number of scenarios – which we consider the most time-consuming parameter of our work.  
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For all three indicators and field OF we can distinguish three phases of evolution, 

even MAE and RMSE having a decreasing behavior and MAAPE an increasing behavior: 

rapid growth (or decrease) zone, linear growth (or decrease) zone and stable zone, as 

shown below (Figure 6.1). 

 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 6.1: Highlight of the different evolution zones for each indicator in Group I – (a) MAE (b) RMSE and 
(c) MAAPE. 

Analyzing the graphs in Figure 6.1, we can observe that the evolution has higher change 

rates between 50 and 500 scenarios and from there it gets smoother, stabilizing in 1,000 

scenarios. The fact that the variation decreases when the number of scenarios reaches 

the number of geostatistical images (500) raised a doubt: Was this phenomenon due to 

the number of images used or due to the statistical distribution and the sampling 

technique? 

To understand this behavior, we repeated the previous analysis considering only 

300 images, and using the same reference as before. Figure 6.2 present the same 

functions as Figure 6.1, comparing the evolution of our Group I indicators with different 

number of images. 
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(a) 

 

(b) 
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 (c) 

Figure 6.2: Comparison of quality indicators generated by cases with 500 and 300 images for (a) MAE_Np 
(b) RMSE_Np and (c) MAAPE_Np 

 

As we expected, the case with 500 images showed better indicators, once those 

additional 200 images increase the range of possible results. In addition, for our new case 

(300 images), it is possible to observe a difference in the behavior of the indicator after it 

reaches the total number of images. In some cases, for well functions, such as the 

example below (Figure 6.3), this behavior is intensified: 
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(a) 

 

(b) 
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 (c) 

Figure 6.3: Comparison of quality indicators generated by cases with 500 and 300 images for (a) 
MAE_PROD010_Np (b) RMSE_PROD010_Np and (c) MAAPE_PROD010_Np 

This behavior, though, is not observed for all functions, but we have strong 

evidence that the stabilization point is directly related to the number of images being 

simulated. 

Another discussion point is the dimensions and physical significance of those 

indicators. Both MAE and RMSE take the same dimensions as the OF and their range 

goes from 0 to ∞. However, as shown in Equation 3.1, MAE simply indicates the absolute 

difference between a reference and a studied parameter, which makes the decision-maker 

interpretations easier, while taking the square of this error (RMSE - Equation 3.3) makes 

the results more difficult to understand, once it is not influenced proportionally by the 

absolute value of each error, as in MAE. MAAPE, though, have a fixed dimension 

(degrees) and a range from 0 to 90° - this may be interesting when comparing different 

OF, but it fails in physical interpretation, once it isn’t clear for the decision maker the 

meaning of a MAAPE of 93°, for example. We could overcome this problem by setting 

limits of acceptance and rejection, but it would be difficult to generalize this value, since it 

would depend on several variables (geo-model, decision-maker profile, uncertainty levels 

and others). 

• Group II 
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As NQDS can reach both negative and positive values, a Boxplot is the most 

suitable plot to study its behavior, once is a method for graphically depicting groups of 

numerical data through their quartiles – we can observe the median, the variability and the 

outliers, as shown in Figure 6.4. For the NQDS indicator, we defined a tolerance – tol – of 

1% for field functions and 2,5% for well functions. 

 

Figure 6.4: Scheme of construction of a boxplot. 

 

For all field OF (Figure 6.5), the NQDS median values resides in the [-1 +1] interval 

since the set of 50 simulations, but we can see a decrease in the dispersion of the values 

and the approximation to zero when the number of simulations increases. 
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(a) 

 

(b) 
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(c) 

Figure 6.5: NQDS indicator for all field OF. 

 

As MAAPE, this indicator has a different dimension regarding the OF and may be 

suitable to compare different OF. The big advantage of this method the defined 

acceptance region (intervals -1 and +1), which relies on the tolerance factor (Equation 

3.14), defined by the user’s experience and/or objective, which also helps the decision 

maker to define what action to take. 

For optimization purposes or situations where the negative values are not desirable, 

we could use a modification of NQDS, removing the 
SD

|𝑆𝐷|
 term of the equation, thus 

assuming only positive values. 

In this type of study, it is interesting to analyze each well separately since results 

combine to mold our field functions, and, therefore, they can compensate each other’s 

“problems” delivering an untrue “well-behavior” field function  

Figure 6.6 and Figure 6.7 shows the four indicators for a vertical well and horizontal 

well, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.6: Quality indicators for NA2D vertical well - (a) MAAPE (b) MAE (c) RMSE (d) NQDS. 

 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Figure 6.7: Quality indicators for PROD009 horizontal well - (a) MAAPE (b) MAE (c) RMSE (d) NQDS. 
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We can observe that the trends for the wells are less regular than field functions – 

Group I show more abrupt steps and Group II show a bigger dispersion, but we still can 

conclude the same previous points for almost all wells – excepting PROD0023A (Figure 

6.8), PROD0024A and PROD0025A (Appendix B), for the reason pointed below. 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 6.8: Quality indicators for PROD023A horizontal well - (a) MAAPE (b) MAE (c) RMSE (d) NQDS. 

These wells presented very irregular trends for Group I. Figure 6.9 may explain this 

behavior: 
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Figure 6.9: Top view of the producer wells of UNISIM-I-D LFM (porosity map). The red circle 
highlights the location of three wells: PROD0023A, PROD024A and PROD025A.  

As we can see inside the red circle, those three wells are the only ones inside the 

East-Block zone which is an uncertainty in the model – it either can or cannot exist 

(Section 5). This uncertainty introduces a significant impact in the model’s response 

(Polizel, 2016) and it appears that this is leading to a higher deviation in the results. 

Nevertheless, even there is a bigger variance in those trends, the data still accompany 

those shown previously and stabilize when closer to 1000 scenarios 

Finally, we must choose, based on the results, the indicator that better measures 

the quality of a solution regarding a reference. We present a decision matrix in Table 6.1, 

each column shows an aspect of interested (advantage) in a quality indicator, and they 

can assume values of 1 to 3. The indicator that cumulate more points will be that suits best 

our study: 
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Table 6.1: Decision matrix. 

 

As we can see, NQDS is the indicator that, given our parameters, fits best as quality 

measurement in risk analysis processes. However, it does not disqualify the others to be 

tested in other methodologies, analysis and applications, each one has their advantages 

and should be explored as well. 

  

Interpretation Finite boudary Physical significance Ease of calculation Acceptance limits Oil & Gas literature Total

MAAPE 1 3 1 1 1 1 8

MAE 3 1 3 3 1 2 13

RMSE 1 1 2 2 1 2 9

NQDS 2 3 1 2 3 3 14
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7 CONCLUSIONS AND RECOMMENTADIONS FOR FUTURE WORK 

In this work, we analyzed and selected an indicator that can estimate the quality of the 

production forecast process of an oil field. This study allowed the following conclusions: 

• Through the literature review, we were able to select four potential indicators – 

MAE, RMSE, MAAPE and NQDS that could assess quality of the production 

forecast processes. 

• The NQDS indicator was the most useful for the application: the biggest advantage 

is the existence of boundaries of acceptance, leading to an easier decision making. 

• Other indicators, such MAE, received a high rating in the decision matrix, showing 

its potential use in other studies. 

• For future works, we could test the capacity of our discussed indicator (NQDS) in 

model calibration – trying to calibrate the LFM using the HFM as reference, in a 

probabilistic approach, that is, calibrate some models and use this calibration for all 

other models. Some information about this subject can be found in Appendix C. 
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9 APPENDIX A – RISK CURVES FOR WP, RFO AND NP 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 9.1: Risk Curves for the Wp function containing 10 samples and the average curve for (a) 50 
scenarios (b) 100 scenarios (c) 200 scenarios (d) 300 scenarios (e) 500 scenarios (f) 700 scenarios 

(g) 1000 scenarios (h) 1500 scenarios and (i) 2000 scenarios. 
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(b) 

 

(c) 

 

(d) 
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(f) 

 

(g) 
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(i) 

Figure 9.2: Risk Curves for the RFo function containing 10 samples and the average curve for (a) 50 
scenarios (b) 100 scenarios (c) 200 scenarios (d) 300 scenarios (e) 500 scenarios (f) 700 scenarios (g) 

1000 scenarios (h) 1500 scenarios and (i) 2000 scenarios. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(g) 

 

(h) 

 

(i) 

Figure 9.3: Risk Curves for the Np function containing 10 samples and the average curve for (a) 50 
scenarios (b) 100 scenarios (c) 200 scenarios (d) 300 scenarios (e) 500 scenarios (f) 700 scenarios (g) 

1000 scenarios (h) 1500 scenarios and (i) 2000 scenarios. 
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10 APPENDIX B – QUALITY INDICATORS FOR FIELD AND WELL 
OBJECTIVE FUNCTIONS 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 10.1: Indicators for field cumulative water production - (a) MAAPE (b) MAE (c) RMSE (d) NQDS. 
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(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 10.2: Indicators for field RFo - (a) MAAPE (b) MAE (c) RMSE (d) NQDS. 

 

 

(a) 

 

(b) 

 

(c) 
 

 (d) 

Figure 10.3:Indicators for PROD024A cumulative oil production - (a) MAAPE (b) MAE (c) RMSE (d) 
NQDS 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10.4: Indicators for PROD025A cumulative oil production - (a) MAAPE (b) MAE (c) RMSE (d) 
NQDS 
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11 APPENDIX C: SUGGESTION FOR FUTURE WORK (MODEL 
CALIBRATION) 

During this work, we ran some tests trying to calibrate the LFM with the HFM as 

reference. The methodology was based in the work of Ligero et al (2004), as showed in 

Figure 11.1. 

 

Figure 11.1 – Proposed methodology for model calibration using the NQDS. 

 First, the model was chosen based the model oil in place of the HFM (the LFM was 

generated using the same geostatistical realization). Then, we adjusted the oil in place and 

productivity index based on the HFM (Figure 11.2). 
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(a) (b) 

 

(c) 
 

(d) 

Figure 11.2: Comparison of oil in place and well productivity (highlighting BHP of NA2) before (a) and (b) and 
after (c) and (d) the adjust. 

The next step, which consists in an optimization step, is to adequate the production 

of the LFM (calibrate) using the NQD (NQDS without signal) of oil and water production 

(field and wells) through adjustments of the pseudo relative permeability, using the Corey 

Coefficients (Corey, 1954), and the result is shown in Figure 11.3. 
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(a) 

 

(b) 

Figure 11.3: Comparison of oil in place before (a) and after (b) the adjust. 

As observed, this first approach did not succeed as expected, but some points 

could be investigated: 

▪ We could study which FOs are the most suitable to calibrate our model, 

instead of only using oil and water production; 

▪ We should verify the calibration method itself, and test new approaches; 

▪ Perform the calibration in a probabilistic study, involving several scenarios. 

 


